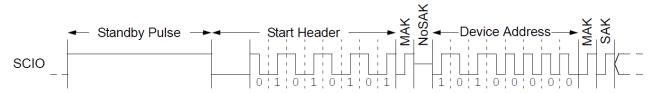
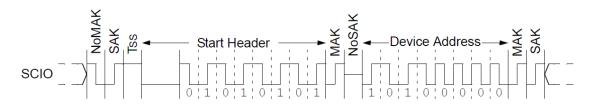

UNI/O介紹與測量分析

在資訊蓬勃的時代中,生活上所使用的3C產品也不斷的演進,例如早期的手機體積十分龐大,而且待機時間又短,透過各式各樣的匯流排協助,產品內的零件也得以進化,使得現在的手機體積小,功能又強大。當然,EEPROM也正逐漸朝這個方向演進,傳統的EEPROM讀寫控制大部分都使用SPI或IIC進行傳輸,但是若是使用SPI做為傳輸介面而言,所使用的IC腳位就需要使用四條訊號通道(SCK、CS、MOSI、MISO),甚至使用IIC做為傳輸介面也需要使用兩條訊號通道(SCK、SDA)。Microchip Technology所推出的UNI/O匯流排是一種僅使用一條訊號通道,就可以達到EEPROM讀寫動作的控制介面,使用UNI/O匯流排的記憶體元件體積小,卻擁有更多的功能,如狀態暫存器(status register), $\frac{1}{4} < \frac{1}{2}$ 或全陣列的軟體寫入保護(software write protection for $\frac{1}{4} , \frac{1}{2}$ or full array)、雜訊過濾,及有效的靜電放電保護功能(ESD protection),確保元件正常運作。

UNI/O是一種非同步串列匯流排,由Microchip Technology針對嵌入式系統中低速通訊部分所設計的。UNI/O僅需要一條訊號通道(SCIO)便可以在主/從裝置之間傳輸資料。

資料編碼方面,UNI/O使用曼徹斯特編碼(Manchester encoding),透過一個位元週期(bit period)內的變化來判斷該位元的邏輯狀態,如圖一所示。



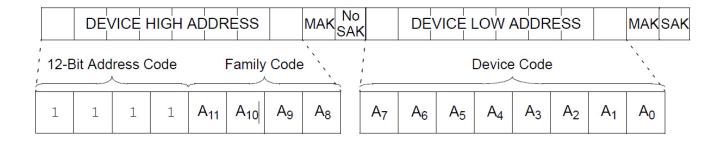

▶ 圖一: IRDA SIR 封包格式

資料結構

一段UNI/O訊框由數個訊號封包所組成,包含了Standby Pulse、Start Header、Device Address (Family Code、Device Code)、Acknowledge Sequence、Command、Data。

Standby Pulse:讓UNI/O進入準備狀態,會出現在Start Header封包之前,是一段持續為邏輯1的訊號,此訊號時間至少維持600us。

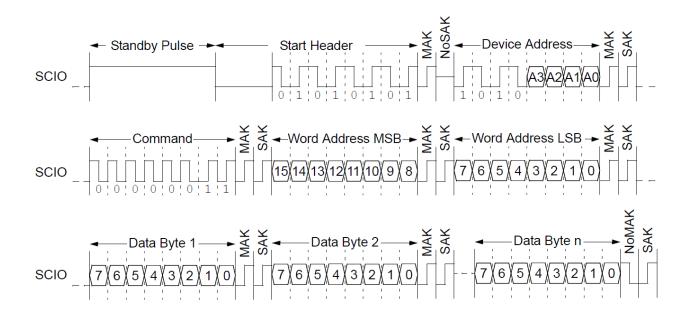
Start Header: 在UNI/O規範中被定義成一個特別的byte,目的用於同步主端與從端的時脈,Start Header起始是一個邏輯0的訊號與Stabdby Pulse切割,資料為0x55,傳送Start Header byte之後會立刻傳送一組ACK作為確認之用,固定由MAK(NoMAK)及SAK(NoSAK)組成。


Acknowledge Sequence:每傳送一個byte後會傳送兩個bit的確認位元,第一個位元是MAK(Master Acknowledge),第二個位元是SAK(Slave Acknowledge)。

MAK(Master Acknowledge) 位元為1時表示Master裝置有回應,此時資料會繼續傳送。若MAK位元為0時,則無回應(以NOMAK/No Master Acknowledge 表示) 此時表示該筆資料傳送完畢。

SAK(NoSAK): 為從端送出的確認訊號,當從端送出SAK時,該位元數值為1, NoSAK的數值為0,當尚未確認哪一個從端回應或沒有從端裝置回應時,該位元為不確定狀態,因此在Start Header的NoSAK為不確定狀態。

Device Address: 固定出現在Start Header之後,由Family Code及Device Code所組成。可分為8-bit address及12-bit address,用於決定Master Device與哪一個Slave Device進行傳輸。Device Address的格式由Device Address中的高四個位元來決定,當包含在Device Address中的高四個位元的數值全部為1時,Device Address的格式為12-bits Device addrsss模式,反之為8 bits Device Address模式。12-bits Device Address模式Device Address由2個Bytes組成,第一個Byte的高四位元固定為1,低四位元為Family Code,第二個Byte為Device Code;當8 bits Device Address模式Device Address,由1個Bytes組成,第一個Byte的高四位元為Family Code,低四位元為Device Code。



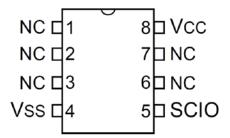
Family Code: Device Address中的四個位元,用於表示目前通訊的裝置狀態,如記憶體、温度感測器或A/D轉換器等。

Device Code: Device Code與Family Code同樣包含於Device Address中,依照Device Address格式不同Device Code可分為四個位元或八個位元。主要用於區分在同一個Family Code底下的裝置,若Device Address為8-bit address則Device Code e為四位元,若Device Address為12-bit address則Device Code為八位元。

Command:當Master裝置確認要傳輸的Slave裝置後會發送一個byte來表示要執行的動作類型, 一共有九種不同的命令。傳送命令時是以MSB開始發送。表一為命令列表。

指令名稱	指令編碼	十六進制編碼	説明
READ	0000 0011	0X03	從記憶體陣列的指定位址開始讀取資料
CRRD	0000 0110	0X06	從記憶體陣列的當前位址讀取資料
WRITE	0110 1100	0X6C	從記憶體陣列的指定位址開始寫入資料
WREN	1001 0110	0X96	Write Enable
WRDI	1001 0001	0X91	Write Disable
RDSR	0000 0101	0X05	讀取STATUS暫存器
WRSR	0110 1110	0X6E	寫入STATUS暫存器
ERAL	0110 1100	0X6D	將陣列中資料清除為0X00
SETAL	0110 0111	0X67	將陣列中資料寫入為0XFF

▶ 表一: UNI/O命令列表



UNI/O訊號實機測量

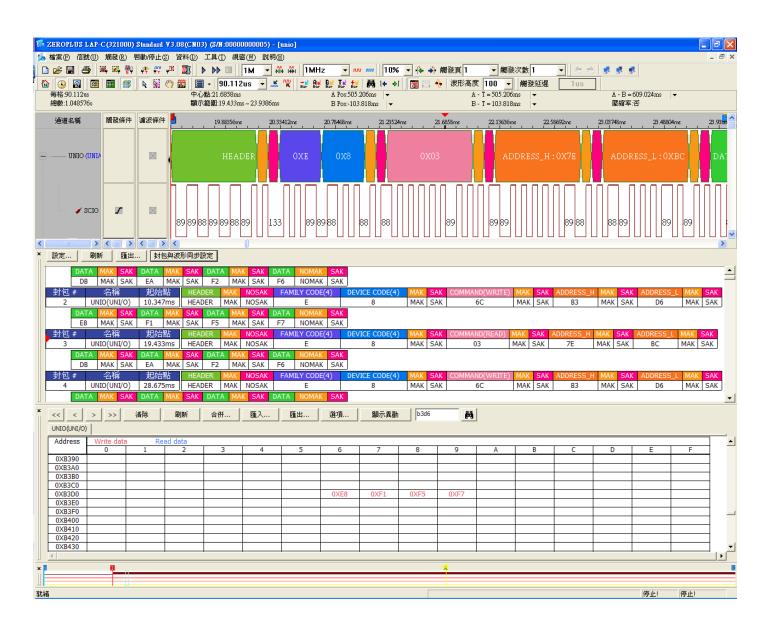
孕龍科技邏輯分析儀可支援UNI/O訊號解碼,本範例中使用Microchip的MPLAB Starter Kit for Serial Memory Products (Part Number: DV243003) 開發套件做為測量目標,並使用該套件中隨附的EE-PROM 11LC160進行資料讀寫,透過孕龍科技UNI/O匯流排模組進行解碼。

11LC160是一款擁有16K記憶容量的EEPROM,圖二為11LC160的腳位説明。

PDIP/SOIC (P, SN)

▶ 圖二:11LC160腳位説明

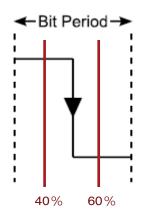
由腳位説明可知,11LC160第五腳即為SCIO,故進行測量需將SCIO接上邏輯分析儀測量。


接著架設測量環境,將孕龍邏輯分析儀的AO及GND透過隨附測試鉤連接至MPLAB Starter Kit for Serial Memory Products上的SDI/SDA及GND,連接完成如圖三所示。

圖三:測量環境連接完成


連接完成後便可以開啟孕龍邏輯分析儀軟體進行訊號測量(邏輯分析儀操作方式請參閱孕龍科技網站www.zeroplus.com.tw),擷取完成波形如圖四所示

▶ 圖四: UNI/O訊號擷取完成



孕龍科技邏輯分析儀UNI/O匯流排模組除了可自動分析訊號封包之外,還可依照訊號內容自行設定輸入邊緣抖動容差。

▶ 圖五: UNI/O匯流排模組設定畫面

邊緣抖動容差:設定曼徹斯特編碼的位元週期中間解碼的變化緣偏移範圍,預設為10%,即表示在位元週期內40%到60%範圍內判斷變化緣。該選項的設定值是5%、10%和 15%。

▶ 圖六:邊緣抖動容差示意

隨著消費性電子產品體積縮小的趨勢,產品內部的電路元件也必須順應這股潮流,由Microchip所推出的UNI/O匯流排便是很好的範例,以往使用EEPROM傳輸時大部分都使用IIC或SPI,但是兩者在IC腳位上需佔據較多PIN腳,無法再進一步縮小電路體積,而UNI/O匯流排僅需一根SCIO腳就可以達到資料傳輸的目的,能使得更多電子產品可擁有更小巧的體積,更強大的功能。

Microchip 記憶體部門產品行銷經理Alex Martinez認為當小尺寸的微控制器及儲存裝置逐漸受到注意時,UNI/O系列是另外一種選擇,它可給予工程師一種小型化且低成本的選擇,可以讓客戶更容易的設計電路及硬體開發。

孕龍科技邏輯分析儀推出了七十多種匯流排解碼模組,針對研發工程師在分析匯流排訊號時,可透 過軟體自動解碼功能縮短開發專案的時間,及早讓商品問世,面對各種數位訊號時,不需要以人工 的方式來解碼欲分析的訊號。關於更多孕龍邏輯分析儀介紹請至孕龍科技網站www.zeroplus.com.tw

參考資料:

http://techtrain.microchip.com/webseminars/ArchivedDetail.aspx?Active=160

http://en.wikipedia.org/wiki/UNI/O

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2542¶m=en535312

* 所有商標及所有權歸屬於原註冊商所有